

Welcome to the HOPR Documentation!

[image: alt]

HOPR [https://github.com/hopr-framework/hopr]
HOPR is an open-source tool for the generation of three-dimensional unstructured high-order meshes.
It is licensed under GPLv3 and written in Fortran.

User Guide

	User Guide
	1. Installation
	1.1. Executable download
	1.1.1. Docker

	1.1.2. AppImage

	1.2. Prerequisites
	1.2.1. Compilers

	1.3. Required Libraries
	1.3.1. Installing/setting up GCC

	1.3.2. Installing/setting up HOPR

	1.3.3. Installing/setting up HDF5

	1.4. Troubleshooting
	1.4.1. Wrongly set HDF5_ROOT variable

	1.4.2. Pre-compiled HDF5 via Spack and/or cmake

	1.5. Testing HOPR

	2. HOPR HDF5 Curved Mesh Format
	2.1. Introduction and Main Idea Behind the Mesh Format

	2.2. Global Attributes

	2.3. Data Arrays
	2.3.1. Example 3D Mesh

	2.3.2. Element Information (ElemInfo)

	2.3.3. FEM Element Information (FEMElemInfo)

	2.3.4. Side Information (SideInfo)

	2.3.5. Edge Information (EdgeInfo)

	2.3.6. Vertex Information (VertexInfo)

	2.3.7. Node Coordinates and Global Index

	2.3.8. Boundary Conditions

	2.4. Parallel Read-in

	2.5. Element Definitions
	2.5.1. Element Types

	2.5.2. Element High Order Nodes

	2.5.3. Element Corners, Sides

	2.5.4. Element Connectivity

	2.6. Additional Extensions: Hanging Node Interface
	2.6.1. Changes to Existing Data Format

	2.6.2. Additional Information for Octrees

	3. Appendix
	3.1. Tested compiler combinations

	4. List of Parameters

Developer Guide

	Developer Guide
	1. Github Workflow

	2. Style Guide

	3. Building the Documentation

	4. Compiler Options

	5. Building the AppImage Executable

	6. Troubleshooting

	7. Markdown Examples

Tutorials

	Built-In Mesh Generators
	1. Straight-Edged Boxes
	1.1. Cartesian Box
	1.1.1. Cartesian Box: Description of Parameters

	1.1.2. Cartesian Box: Boundary Conditions and Sketch

	1.1.3. Cartesian Box: Output Visualization

	1.1.4. Cartesian Box: Exemplary Variations of Boundary Conditions

	1.2. Periodic Boundary Conditions
	1.2.1. Periodic Boundary Conditions: Description of Parameters

	1.2.2. Periodic Boundary Conditions: Boundary Conditions and Sketch

	1.3. Multiple Cartesian Boxes
	1.3.1. Multiple Cartesian Boxes: Definition of Multiple Cartesian Boxes

	1.3.2. Multiple Cartesian Boxes: Sketch

	1.3.3. Multiple Cartesian Boxes: Output Visualization

	1.4. Stretching Functions
	1.4.1. Stretching Functions: Definition of Stretching Functions

	1.4.2. Stretching Functions: Building a Cartesian Box with Stretched Elements

	1.4.3. Stretching Functions: Building Multiple Cartesian Boxes with Stretched Elements

	1.4.4. Stretching Functions: Sketch

	1.4.5. Stretching Functions: Output Visualization

	2. Curved Meshes
	2.1. Curved Structured Mesh
	2.1.1. Stretching Functions

	2.1.2. Examples

	2.2. Mesh Curving by Post-Deformation
	2.2.1. Post-Deformation from a box to a cylinder

	2.2.2. Parameter Variations

	2.3. Curved Torus
	2.3.1. Post-Deformation from a box to a torus

	2.4. Curved Sphere
	2.4.1. Post-Deformation from a box to a sphere

	2.4.2. Spherical shell

	External Meshes
	1. External Meshes without Curved Boundaries
	1.1. External Mesh

	1.2. Output Visualization

	2. External Meshes with Curved Boundaries
	2.1. Mesh Curving Techniques

	2.2. Curving Using Normal Vectors

	2.3. Curving Using Subdivided Surface Mesh

	2.4. Use of pre-curved meshes

	Agglomeration of Block-Structured Meshes
	1. Block-Structured Meshes
	1.1. Restrictions on the block-structured meshes

	1.2. Initial Meshes

	1.3. Description of Parameters

	Post-processing Meshes
	1. Mesh uncurving

	2. Mesh Refinement

	3. Generation of Hexahedral Meshes

	Visualization
	1. HOPR Output Parameter

	2. Visualization with Paraview
	2.1. Parameter Settings

	2.2. Recommended Settings

References

	References

User Guide

This user guide describes the installation procedure and the mesh format used in hopr and is intended for people using hopr as a
mesh generator.

Table of Contents

	1. Installation

	2. HOPR HDF5 Curved Mesh Format

	3. Appendix

	4. List of Parameters

This user guide is organized to both guide the first steps as well as provide a complete overview of
the simulation code’s features from a user and a developer point of view.

	Chapter Installation contains step by step instructions from obtaining the source
code up to running hopr and visualizing the generated mesh.

	Chapter HOPR HDF5 Curved Mesh Format describes in detail how the hopr mesh format is constructed and
how mesh information is processed.

	Chapter Appendix contains additional information, e.g., tested compiler and library versions.

	Chapter List of Parameters gives an overview of all read-in parameters that are available in hopr.

1. Installation

The following chapter describes the installation procedure on a Linux machine, possibly requiring root access.
This may include the installation of required prerequisites, e.g., setting up HDF5.
Please note that high-performance clusters usually have a module environment, where you have to load the appropriate modules
instead of compiling them yourself.

1.1. Executable download

HOPR can be installed on a Linux machine without the need of compiling the source code.
Currently there are two ways by which HOPR is distributed, as a docker container and as an AppImage executable.

1.1.1. Docker

Install the package via

docker pull ghcr.io/hopr-framework/docker-ubuntu20-hopr-exec:latest

1.1.2. AppImage

Download the pre-compiled (on Centos7) executable from the release tag assets [https://github.com/hopr-framework/hopr/releases] or
from the GitHub Actions builds: cmake-ninja [https://github.com/hopr-framework/hopr/actions] to get a bleeding-edge version.
Note that you need to be logged into Github (see button “Sign in to view logs”) in order to be able to download any artefacts.
After downloading the binary file, it has to be made executable via

chmod +x hopr-x86_64.AppImage

before being used.

The following table shows that there is no apparent drop in performance when using a pre-compiled executable:

Table 1.1 Performance test with pre-compiled executable: Cart-2D 665600 #Elements

	Binary

	Laptop

	Hawk

	Commit

	

	AMD Ryzen 7 4800H

	AMD EPYC 7702

	

	hopr-x86_64.AppImage

	22.087

	29.274

	0324ba3

	hopr/master/gcc/12.2.0/openmpi/4.1.4/hdf5/1.12.2

	27.064

	

	afd6756

1.2. Prerequisites

HOPR supports Linux-based systems only, requires a x86_64 compliant platform and has been tested on the following platforms

	Linux Mint 17 or newer

	Red Hat Enterprise Linux 7.6 or newer

	SUSE Linux Enterprise Server 11 SP3 or newer

	Ubuntu 14.04 LTS, 16.04 LTS and 18.04 LTS, 20.04 LTS 20.10, 21.04 and 22.04 LTS

For tested combinations of prerequisites (HDF5, OpenMPI, CMake etc.) and known problems that may occur, visit
Chapter Appendix.

The suggested packages in this section can be replaced by self compiled versions. The required packages for the Ubuntu Linux
distributions are listed in Table 1.2.
Under Ubuntu, they can be obtained using the apt environment:

sudo apt-get install git

Table 1.2 Debian/Ubuntu packages. x: required, o: optional, -: not available

	Package

	Ubuntu 14.04

	Ubuntu 16.04

	Ubuntu 18.04

	Ubuntu 20.04

	git

	x

	x

	x

	x

	cmake

	x

	x

	x

	x

	cmake-curses-gui

	o

	o

	o

	o

	liblapack3

	x

	x

	x

	x

	liblapack-dev

	x

	x

	x

	x

	gfortran

	x

	x

	x

	x

	g++

	x

	x

	x

	x

	mpi-default-dev

	x

	x

	x

	x

	zlib1g-dev

	-

	x

	x

	x

	exuberant-ctags

	o

	o

	o

	o

On some systems it may be necessary to increase the size of the stack (part of the memory used to store information about active
subroutines) in order to execute HOPR correctly. This is done using the command

ulimit -s unlimited

from the command line. For convenience, you can add this line to your .bashrc.

1.2.1. Compilers

HOPR requires a C and a Fortran 2003 compliant compiler, compilers tested with HOPR include

	GNU Compiler Collection 4.6 or newer

	Intel C/Fortran Compiler 12 or newer (recommended)

	CRAY Compiler Environment 8.1 or newer

HOPR furthermore requires CMake 3.5.2+ as a build system.

1.3. Required Libraries

The following libraries are required, if not mentioned otherwise, including their development headers. Libraries marked with a star
(*) can alternatively be provided by HOPR.

	BLAS/LAPACK* (or compatible, e.g. ATLAS, MKL)

	CGNS*

	HDF5*

	libc6

	zlib

	Python 2.7 or newer (optional)

If not present on your system, HOPR can automatically download and compile these libraries

	HDF5 (1.12.0 if OpenMPI 4.0.0+ is detected, 1.10.6 otherwise)

	LAPACK (0.3.17)/OpenBLAS (3.10.0)

	CGNS (3.4.1)

For a list of tested library version combinations, see Chapter Appendix.

1.3.1. Installing/setting up GCC

Additional packages are required starting at specific versions of the GCC compiler suite.

	GCC Version

	Ubuntu 20.04 (and older)

	9.3.0

	libmpfr-dev

	

	libmpc-dev

1.3.2. Installing/setting up HOPR

HOPR supports CMake as a build system, which should be available on most systems. Ensure that your environment variables CC and
FC (as well as their corresponding MPI counterparts MPICCand MPIFC if compiling with MPI support) point to the correct compiler.

For compiling HOPR, create a new sub-directory, e.g. “build” . Inside that directory execute

ccmake ..

Here you can specify library paths and options. If no preinstallied libraries for HDF5 and CGNS are found these libraries will be
downloaded and built automatically. Press c to configure and g to create the Makefiles. Finally compile HOPR by typing make.

LIBS_USE_CGNS: If the user does not need the cgns library (i.e. HOPR mesh is not built via a cgns input meshfile), the cmake
option LIBS_USE_CGNS can be set to OFF, which skips the installation of the cgns library.
Note that the cmake tests that depend on CGNS will not be executed.

HOPR_INSTRUCTION: Processor instruction settings (mainly depending on the hardware on which the compilation process is
performed or the target hardware where HOPR will be executed). This variable is set automatically depending on the machine where
HOPR is compiled. CMake prints the value of this parameter during configuration

 -- Compiling Release/Profile with [GNU] (v12.2.0) fortran compiler using HOPR_INSTRUCTION [-march=native] instruction

When compiling HOPR on one machine and executing the code on a different one, the instruction setting should be set to
generic. This can be accomplished by running

 cmake -DHOPR_INSTRUCTION=-mtune=generic

To reset the instruction settings, run cmake again but with

 -DHOPR_INSTRUCTION=

which resorts to using the automatic determination depending on the detected machine.

1.3.3. Installing/setting up HDF5

An available installation of HDF5 can be utilized with HOPR. This requires properly setup environment variables and the
compilation of HDF5 during the HOPR compilation has to be turned off (LIBS_BUILD_HDF5 = OFF). If this option is enabled,
HDF5 will be downloaded and compiled. However, this means that every time a clean compilation of HOPR is performed, HDF5 will
be recompiled. It is preferred to either install HDF5 on your system locally or utilize the packages provided on your cluster.

The recommended HDF5 version to use with HOPR is hdf5-1_12_0. In the following a manual installation of HDF5 is described,
if HDF5 is already available on your system you can skip to the next section Setting environment variables.

1.3.3.1. Manual HDF5 installation

First, download HDF5 from HDFGroup (external website) [https://portal.hdfgroup.org/display/support/Downloads] and extract it

tar xvf hdf5-version.tar.gz

Then create a build folder

cd hdf-version && mkdir -p build

and configure HDF5 to install into “/opt/hdf5/1.X.X” (your choice, should be writable)

cmake -DBUILD_TESTING=OFF -DHDF5_BUILD_FORTRAN=ON -DHDF5_BUILD_CPP_LIB=OFF -DHDF5_BUILD_EXAMPLES=OFF -DHDF5_ENABLE_PARALLEL=ON -DHDF5_BUILD_HL_LIB=ON -DHDF5_BUILD_TOOLS=ON -DHDF5_ENABLE_F2003=ON -DBUILD_SHARED_LIBS=OFF -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=/opt/hdf5/1.X.X ..

Make and install (if you chosen a folder required root access)

make && make install

1.3.3.2. Setting environment variables

Depending whether HDF5 was installed using configure or CMake, different settings for the HDF5_DIR variable are required

	Configure

 export HDF5_DIR = /opt/hdf5/1.X.X

	CMake

 export HDF5_DIR = /opt/hdf5/1.X.X/shared/cmake/XXX

If your CMake version is above 3.9.X, CMake uses a new findPackage routine, requiring that HDF5_ROOT is set

export HDF5_ROOT=/opt/hdf5/1.X.X

For convenience, you can add these lines to your .bashrc.

IMPORTANT: Note that HDF5_ROOT must be cleared or set to the correct path when using LIBS_BUILD_HDF5 = ON to prevent cmake from compiling
hopr and cgns with different HDF5 versions. Otherwise, an error might occur, see Wrongly set HDF5_ROOT variable.

1.4. Troubleshooting

Sometimes errors occur during installation, for which standard fixes may apply.

1.4.1. Wrongly set HDF5_ROOT variable

Requirements: The cmake options LIBS_BUILD_HDF5 = ON and LIBS_BUILD_CGNS = ON have been set.

The output error might look like this during compilation

[6%] Building C object src/CMakeFiles/cgns_static.dir/cgns_internals.c.o
/hdf5/hdf5-1.12.2/include/H5public.h:68:10: fatal error: mpi.h: No such file or directory
68 | #include <mpi.h>
| ^~~~~~~
compilation terminated.

or the build test might fail with the following message

WRITING THE DEBUGMESH...
 #Elements 113
 WRITE DATA TO CGNS FILE... SPHERE_CURVED_Debugmesh.cgnsWarning! ***HDF5 library version mismatched error***
...
...
...
#16 0x149524759d8f in __libc_start_call_main
 at ../sysdeps/nptl/libc_start_call_main.h:58
#17 0x149524759e3f in __libc_start_main_impl
 at ../csu/libc-start.c:392
#18 0x4047d4 in ???
#19 0xffffffffffffffff in ???

The cause of the problem is that export HDF5_ROOT=/opt/hdf5/vX.X.X/... sets the HDF5_ROOT environment variable, which leads
to HDF5 being built with possibly a different version (or compiler settings) for HOPR and CGNS.
The variable is also exposed in cmake

HDF5_ROOT /opt/hdf5/1.X.X

Note that it does not matter if the correct path is exported via export HDF5_DIR=... if the variable HDF5_ROOT is also set as
CGNS automatically searches for the latter.

To fix this problem, set export HDF5_ROOT= in the installation terminal.

1.4.2. Pre-compiled HDF5 via Spack and/or cmake

Requirements: The cmake options LIBS_BUILD_HDF5 = OFF and LIBS_BUILD_CGNS = ON have been set. Furthermore, it is not clear
whether the pre-installed HDF5 library is installed using Spack AND/OR built via cmake.

The output error might look like this during compilation

CMake Error at CMakeLists.txt:210 (add_executable):
add_executable cannot create imported target "h5dump" because another
target with the same name already exists.

To fix this problem, pre-compile HDF5 using configure instead of cmake AND/OR do not use Spack. Otherwise compile
HDF5 using LIBS_BUILD_HDF5 = ON and do not forget to clear the HDF5_ROOT variable, see Wrongly set HDF5_ROOT variable.

1.5. Testing HOPR

After compiling, tests are automatically run for each parameterfile provided in sub-directories of the tutorials directory. The runs are pre-built by cmake in the build/buildTests directory and executed there.

2. HOPR HDF5 Curved Mesh Format

Authors: Florian Hindenlang, Thomas Bolemann, Tobias Ott, Stephen Copplestone, Marcel Pfeiffer, Patrick Kopper

Last modified: November 23, 2023

2.1. Introduction and Main Idea Behind the Mesh Format

The High Order Preprocessor (HOPR) is able to generate high order unstructured 3D meshes, including tetrahedra, pyramids, prisms
and hexahedra.
The HDF5 library (http://www.hdfgroup.org/) allows to use parallel MPI-I/O, thus the mesh format is designed for a fast
parallel read-in, using large arrays.
There is also the GUI HDFView to browse h5 files.

An important feature is that the elements are ordered along a space-filling curve.
This allows a simple domain decomposition during parallel read-in, where one simply divides the number of elements by the number of
domains, so that each domain is associated with a contiguous range of elements.
That means one can directly start the parallel computation with an arbitrary number of domains (\(\geq\) number of elements) and
always read the same mesh file.

For each element, the neighbor connectivity information of the element sides and the element node information (index and position)
are stored as a package per element, allowing to read contiguous data blocks for a given range of elements.
To enable a fast parallel read-in, the coordinates of the same physical nodes are stored several times, but can be still associated
by a unique global node index.

Notes:

	Array-indexing starts at 1! (Fortran/Matlab Style)

	Element connectivity is based on CGNS unstructured mesh standard (CFD general notation system, http://cgns.sourceforge.net), see Section Element Corners, Sides

	The polynomial degree \(N_{geo}\) of the curved element mappings is globally defined. Straight-edged elements are found for \(N_{geo}=1\).

	Only the nodes for the volume element mapping and no surface mappings are stored.

	Curved node positions in reference space are uniform for all element types (see Section Element High Order Nodes).

	Data types: we use 32bit INTEGER and 64bit REAL (double precision), if not stated differently.

HOPR generates *_mesh.h5 files. You can find examples of the mesh file by executing the tutorials in HOPR, and you can browse
the files using HDFView.

2.2. Global Attributes

These attributes are defined globally for the whole mesh as given in table Table 2.1.
For a mesh with elements having only straight edges, the polynomial degree of the element mapping is Ngeo\(=N_{geo}=1\).
A mesh with curved elements has a fixed polynomial degree \(N_{geo}>1\) for all elements.

Table 2.1 Mesh File attributes.

	Attribute

	Data type

	Description

	Version

	REAL

	Mesh File Version

	Ngeo \(\geq 1\)

	INTEGER

	Polynomial degree \(N_{geo}\) of element mapping, used to determine the number of nodes per element

	nElems

	INTEGER

	Total number of elements in mesh

	nSides

	INTEGER

	Total number of sides (or element faces) in mesh

	nNodes

	INTEGER

	Total number of nodes in mesh

	nUniqueSides

	INTEGER

	Total number of geometrically unique sides in the mesh

	nUniqueNodes

	INTEGER

	Total number of geometrically unique nodes in the mesh

	nBCs

	INTEGER

	Size of the Boundary Condition list

	FEMconnect

	STRING “ON”/”OFF”

	“ON” if FEM edge and vertex connection have been built and written to file.

	only for FEMconnect=”ON”:

	

	

	⮡ nEdges

	INTEGER

	Total number of entries in the EdgeInfo array (=sum over elements of nEdge(ElemType))

	⮡ nVertices

	INTEGER

	Total number of entries in the VertexInfo array (=sum over elements of nVertices(ElemType))

	⮡ nUniqueEdges

	INTEGER

	Total number of geometrically unique edges in the mesh

	⮡ nFEMSides

	INTEGER

	Total number of topologically (includes periodicity) unique sides in the mes (needed for a FEM solver)

	⮡ nFEMEdges

	INTEGER

	Total number of topologically (includes periodicity) unique edges in the mesh (needed for a FEM solver)

	⮡ nFEMEdgeConnections

	INTEGER

	Size of EdgeConnectInfo

	⮡ nFEMVertices

	INTEGER

	Total number of topologically (includes periodicity) unique vertices in the mesh (needed for a FEM solver)

	⮡ nFEMVertexConnections

	INTEGER

	Size of VertexConnectInfo

2.3. Data Arrays

The mesh information is organized in arrays.
The data is always stored in blocks for each element, which results in storing it multiple times.
However, this way, each processor has a defined, non overlapping, range of geometry and connectivity information, where it can perform IO
operations, minimizing the need of communication between processors.

The ElemInfo array is the first to read, since it contains the data range of each
element in the SideInfo, EdgeInfo, VertexInfo and NodeCoords / GlobalNodeIDs arrays.

Table 2.2 List of all data arrays in mesh file. Dimensions marked with \(^*\) will be distributed in parallel read mode.

	Array Name

	Description

	Type

	Size

	ElemInfo

	Start\End positions of element data in SideInfo /NodeCoords

	INTEGER

	(1:6,1:nElems\(^*\))

	SideInfo

	Side Data / Connectivity information

	INTEGER

	(1:5,1:nSides\(^*\))

	EdgeInfo

	Element Edge information and offsets in EdgeConnectInfo

	INTEGER

	(1:3,1:nEdges\(^*\))

	NodeCoords

	Node Coordinates

	REAL

	(1:3,1:nNodes\(^*\))

	GlobalNodeIDs

	Globally unique node index

	INTEGER

	(1:nNodes\(^*\))

	BCNames

	List of user-defined boundary condition names (max. 255 Characters)

	STRING

	(1:nBCs)

	BCType

	Four digit boundary condition code

	INTEGER

	(1:4,1:nBCs)

	ElemBarycenters

	Barycenter location of each element

	REAL

	(1:3,1:nElems\(^*\))

	ElemWeight

	Element Weights for domain decomposition (=1 by default)

	REAL

	(1:nElems\(^*\))

	ElemCounter

	mesh statistics (no. of elements of each element type)

	INTEGER

	(1:2,1:11)

	only for FEMconnect=”ON”:

	

	

	

	⮡ FEMElemInfo

	Start\End positions of element data in EdgeInfo/VertexInfo

	INTEGER

	(1:4,1:nElems\(^*\))

	⮡ EdgeConnectInfo

	Connectivity information for each element edge (needed for a FEM solver)

	INTEGER

	(1:2,1:nFEMEdgeConnections)

	⮡ VertexInfo

	Element Vertex Data information and and offsets in VertexConnectInfo

	INTEGER

	(1:3,1:nVertices\(^*\))

	⮡ VertexConnectInfo

	Connectivity information for each element vertex (needed for a FEM solver)

	INTEGER

	(1:2,1:nFEMVertexConnections)

2.3.1. Example 3D Mesh

In the following sections, we explain the array definitions and show an example, which refers to the mesh in Fig. 2.1
with straight-edges, so \(N_{geo}=1\). There is one element of each type, a tetrahedron, a pyramid, a prism and a hexahedron, four
elements in total. Corner nodes and element sides have unique indices.

[image: ../_images/ex_allelem.jpg]

Fig. 2.1 Example 3D mesh with unique node IDs (circles) and unique side IDs (underline) and element-local coordinate system.

The global attributes of the mesh are shown in Table 2.3.

Table 2.3 Global attributes for example 3D mesh with 4 elements.

	

	

	

	

	

	

	Ngeo

	1

	nElems

	4 (Prism,Hex,Tet,Pyra)

	nBCs

	4

	nSides

	20 (=5+6+4+5)

	nUniqueSides

	16

	nFEMSides

	16

	nEdges

	35

	nUniqueEdges

	22

	nFEMEdges

	22

	nNodes

	23 (=6+8+4+5)

	nUniqueNodes

	11

	nFEMVertices

	11

2.3.2. Element Information (ElemInfo)

Table 2.4 Element Information

	

	

	Name in file:

	ElemInfo

	Type:

	INTEGER, Size: Array(1:6,1:nElems\(^*\))

	Description:

	Array containing elements, one element per row, row number is elemID.

The example mesh Fig. 2.1 with 4 elements is summarized in table Table 2.5.
The example shows the four different elements (prism/hexahedron/tetrahedra/pyramid), the prism and hexa are in zone \(1\) and the tet
and the pyramid in zone \(2\). A detailed list of the element type encoding is found in Section Element Types.

Table 2.5 ElemInfo array for example 3D mesh with 4 elements.

	

	Element Type

	Zone

	offsetIndSIDE

	lastIndSIDE

	offsetIndNODE

	lastIndNODE

	1

	116

	1

	0

	5

	0

	6

	2

	118

	1

	5

	11

	6

	14

	3

	104

	2

	11

	15

	14

	18

	4

	115

	2

	15

	20

	18

	23

Table 2.6 ElemInfo definitions.

	

	

	Element Type:

	Encoding for element type, see Section Element Types.

	Zone:

	Element group number.

	offsetIndSIDE/lastIndSIDE:

	Each element has a range of sides in the SideInfo array.

	offsetIndNODE/lastIndNODE:

	Each element has a range of node coordinates in the NodeCoords array and GlobalNodeIDs array for unique indices.

The range and the size are always defined as: Range=[offset+1,last], Size=last-offset

2.3.3. FEM Element Information (FEMElemInfo)

This array will only exist if FEMConnect="ON" (hopr parameterfile flag generateFEMconnectivity=T).

Table 2.7 FEM Element Information

	

	

	Name in file:

	FEMElemInfo

	Type:

	INTEGER, Size: Array(1:4,1:nElems\(^*\))

	Description:

	Array containing elements, one element per row, row number is elemID.

The example mesh Fig. 2.1 with 4 elements is summarized in table Table 2.5.
The example shows the four different elements (prism/hexahedron/tetrahedra/pyramid), the prism and hexa are in zone \(1\) and the tet
and the pyramid in zone \(2\). A detailed list of the element type encoding is found in Section Element Types.

Table 2.8 FEMElemInfo array for example 3D mesh with 4 elements.

	

	offsetIndEDGE

	lastIndEDGE

	offsetIndVERTEX

	lastIndVERTEX

	1

	0

	9

	0

	6

	2

	9

	21

	6

	14

	3

	21

	27

	14

	18

	4

	27

	35

	18

	23

Table 2.9 FEMElemInfo definitions.

	

	

	offsetIndEDGE/lastIndEDGE:

	Each element has a range of edges in the EdgeInfo array.

	offsetIndVERTEX/lastIndVERTEX:

	Each element has a range of edges in the VertexInfo array.

The range and the size are always defined as: Range=[offset+1,last], Size=last-offset

2.3.4. Side Information (SideInfo)

Table 2.10 Side Information

	

	

	Name in file:

	SideInfo

	Type:

	INTEGER, Size: Array(1:6,1:nSides\(^*\))

	Description:

	Side array, all information of one element is stored continuously (CGNS ordering, \rf{fig:CGNS})

	

	in range ‘offsetIndSIDE+1:lastIndSIDE’ from ElemInfo.

The SideInfo array for the example mesh Fig. 2.1 with 4 elements is given in table Table 2.11.

Table 2.11 SideInfo array for example 3D mesh with 4 elements.

	

	SideType

	GlobalSideID

	nbElemID

	10*nbLocSide+Flip

	BCID

	[#ElemID,locSideID]

	in ElemInfo

	1

	3

	1

	0

	0

	1

	[#1,1]

	[(offsetIndSIDE,1)+1]

	2

	14

	2

	2

	43

	0

	[#1,2]

	

	3

	14

	3

	0

	0

	3

	[#1,3]

	

	4

	14

	4

	0

	0

	4

	[#1,4]

	

	5

	3

	5

	3

	12

	0

	[#1,5]

	[(lastIndSIDE,1)]

	6

	14

	6

	0

	0

	1

	[#2,1]

	[(offsetIndSIDE,2)+1]

	7

	14

	7

	0

	0

	2

	[#2,2]

	

	8

	14

	8

	2

	50

	3

	[#2,3]

	

	9

	14

	-2

	1

	23

	0

	[#2,4]

	

	10

	14

	9

	2

	30

	4

	[#2,5]

	

	11

	14

	10

	4

	14

	0

	[#2,6]

	[(lastIndSIDE,2)]

	12

	3

	-5

	1

	52

	0

	[#3,1]

	[(offsetIndSIDE,3)+1]

	13

	3

	11

	4

	42

	0

	[#3,2]

	

	14

	3

	12

	0

	0

	3

	[#3,3]

	

	15

	3

	13

	0

	0

	4

	[#3,4]

	[(lastIndSIDE,3)]

	16

	14

	-10

	2

	61

	0

	[#4,1]

	[(offsetIndSIDE,4)+1]

	17

	3

	15

	0

	0

	2

	[#4,2]

	

	18

	3

	16

	0

	0

	3

	[#4,3]

	

	19

	3

	-11

	3

	22

	0

	[#4,4]

	

	20

	3

	14

	0

	0

	4

	[#4,5]

	[(lastIndSIDE,4)]

Table 2.12 SideInfo definitions

	

	

	SideType:

	Side type encoding, the number of corner nodes is the last digit (triangle/quadrangle), more details see Section Element Types.

	GlobalSideID:

	Unique global side identifier, can be directly used as MPI tag: it is negative if the side is a slave side (a master and a slave side is defined for side connections).

	nbElemID:

	ElemID of neighbor element (\(=0\) for no connection). This helps to quickly build up element connections, for local (inside local element range) as well as inter-processor element connections.

	10nbLocSide+Flip:

	first digit : local side of the connected neighbor element\(\in[1,\dots,6]\), last digit: Orientation between the sides (flip \(\in [0,\dots,4]\)), see Section Element Connectivity.

	BCID:

	Refers to the row index of the Boundary Condition List in BCNames/BCType array (\(\in[1,\dots\text{\texttt{nBCs}}]\)). \(=0\) for inner sides. Note that \(\neq 0\) for periodic and inner boundary conditions, while nbElemID and nbLocSide+Flip are given, see Section Boundary Conditions.

2.3.5. Edge Information (EdgeInfo)

These arrays will only exist if FEMConnect="ON" (hopr parameterfile flag generateFEMconnectivity=T).

[image: ../_images/2d_edge_vertex_connectivity_example.jpg]

Fig. 2.2 Example 2D mesh with periodic BC, local, unique node IDs and FEMVertexID (circles,ellipses) and local, unique edge IDs and their FEMEdgeIDs (trapezoid) Arrows for edge orientation

The EdgeInfo array includes the FEMEdgeID of each local element edge in the same order as the CGNS edges as well as the offsetIndEDGEConnect and the lastIndEDGEConnect which refer to the corresponding position on the additional EdgeConnectInfo array. Here, the nbElemID as well as the localEdgeID in the corresponding nbElemID are saved.

Therefore, the multiplicity is given as multiplicity=lastEdgeConnect - offSetEdgeConnect+1.

Table 2.13 Edge Information

	

	

	Name in file:

	EdgeInfo

	Type:

	INTEGER, Size: Array(1:3,1:nEdges\(^*\))

	Description:

	Edge array, all information of one element is stored continuously (CGNS ordering, \rf{fig:CGNS})

	

	in the range ‘offsetIndEDGE+1:lastIndEDGE’ from FEMElemInfo.

The EdgeInfo array for the example mesh Fig. 2.2 with 4 elements is given in table Table 2.14.

Table 2.14 EdgeInfo array for example 2D mesh with 4 elements.

	

	(+/- orientation)FEMEdgeID

	offsetIndEDGEConnect

	LastIndEDGEConnect

	[#ElemID,locEdgeID]

	[in FEMElemInfo]

	1

	- 6

	0

	1

	[#1,1]

	[(offsetIndEDGE,1)+1]

	2

	- 10

	1

	2

	[#1,2]

	

	3

	+ 2

	2

	2

	[#1,3]

	

	4

	+ 11

	2

	3

	[#1,4]

	[(lastIndEDGE,1)]

	5

	+ 7

	3

	3

	[#2,1]

	[(offsetIndEDGE,2)+1]

	6

	- 8

	3

	4

	[#2,2]

	

	7

	+ 6

	4

	5

	[#2,3]

	

	8

	- 9

	5

	6

	[#2,4]

	[(lastIndEDGE,2)]

	9

	+ 3

	6

	6

	[#3,1]

	[(offsetIndEDGE,3)+1]

	10

	+ 10

	6

	7

	[#3,2]

	

	11

	+ 8

	7

	8

	[#3,3]

	

	12

	- 5

	8

	9

	[#3,4]

	[(lastIndEDGE,3)]

	13

	+ 1

	9

	9

	[#4,1]

	[(offsetIndEDGE,4)+1]

	14

	+ 5

	9

	10

	[#4,2]

	

	15

	+ 9

	10

	11

	[#4,3]

	

	16

	- 11

	11

	12

	[#4,4]

	[(lastIndEDGE,4)]

Table 2.15 EdgeInfo definitions

	

	

	FEMEdgeID:

	Topologically unique global edge ID, includes periodicity. Sign refers to the local to global edge orientation (+ is same / - is opposite)

	offsetIndEDGEConnect/lastIndEDGEConnect:

	Each local element edge has a range of neighbor element edges in the EdgeConnectInfo array

Table 2.16 EdgeConnectInfo array for example 2D mesh with 4 elements.

	

	(+/- master/slave) nbElemID

	(+/- orientation)nbLocEdgeID

	[#ElemID,locEdgeID,FEMEdgeID]

	[in EdgeInfo]

	1

	+ 2

	+ 3

	[#1,1,6]

	[(offsetIndEDGEConnect, 1)+1]

	2

	- 3

	+ 2

	[#1,2,10]

	[(offsetIndEDGEConnect, 2)+1]

	3

	+ 4

	- 4

	[#1,4,11]

	[(offsetIndEDGEConnect, 4)+1]

	4

	- 3

	+ 3

	[#2,2,8]

	[(offsetIndEDGEConnect, 6)+1]

	5

	- 1

	- 1

	[#2,3,6]

	[(offsetIndEDGEConnect, 7)+1]

	6

	- 4

	+ 3

	[#2,4,9]

	[(offsetIndEDGEConnect, 8)+1]

	7

	+ 1

	- 2

	[#3,2,10]

	[(offsetIndEDGEConnect,10)+1]

	8

	+ 2

	- 2

	[#3,3,8]

	[(offsetIndEDGEConnect,11)+1]

	9

	- 4

	+ 2

	[#3,4,5]

	[(offsetIndEDGEConnect,12)+1]

	10

	+ 3

	- 4

	[#4,2,5]

	[(offsetIndEDGEConnect,14)+1]

	11

	+ 2

	- 4

	[#4,3,9]

	[(offsetIndEDGEConnect,15)+1]

	12

	- 1

	+ 4

	[#4,4,11]

	[(offsetIndEDGEConnect,16)+1]

Table 2.17 EdgeConnectInfo definitions

	

	

	nbElemID:

	element ID of connected element via the edge. Sign refers if the neighbor edge is master or slave (+ master / - slave)

	

	from the master slave information, the master/slave of the elements’ edge can be deduced

	nbLocEdgeID:

	local Edge ID in neighbor element. Sign refers to the local to global edge orientation of neighbor edge (+ is same / - is opposite)

2.3.6. Vertex Information (VertexInfo)

These arrays will only exist if FEMConnect="ON" (hopr parameterfile flag generateFEMconnectivity=T).

The VertexInfo array includes the FEMVertexID of each local element vertex in the same order as the CGNS corners as well as the offsetIndVERTEXConnect and the lastIndVERTEXConnect
which refer to the corresponding position in the additional VertexConnectInfo array. Here, the nbElemID as well as the localNodeID in the corresponding nbElemID are saved.

Therefore, the multiplicity is given as multiplicity = lastIndVERTEXConnect- offsetIndVERTEXConnect + 1.

{table} Vertex Information

name: tab:vertex_info

Name in file:	**VertexInfo**
Type:	INTEGER, Size: Array(1:3,1:**nVertices***)
Description:	Vertex array, all information of one element is a stored continuously (CGNS ordering, \rf{fig:CGNS})
	in the range 'offsetIndVERTEX+1:lastIndVERTEX' from **FEMElemInfo**.

Table 2.18 VertexInfo array for example 2D mesh with 4 elements.

	

	FEMVertexID

	offsetIndVERTEXConnect

	lastIndVERTEXConnect

	[#ElemID,locVertexID]

	[in FEMElemInfo]

	1

	5

	0

	2

	[#1,1]

	[(offsetIndVERTEX,1)+1]

	2

	6

	2

	4

	[#1,2]

	

	3

	3

	4

	5

	[#1,3]

	

	4

	4

	5

	6

	[#1,4]

	[(lastIndVERTEX,1)]

	5

	2

	6

	9

	[#2,1]

	[(offsetIndVERTEX,2)+1]

	6

	2

	9

	12

	[#2,2]

	

	7

	6

	12

	14

	[#2,3]

	

	8

	5

	14

	16

	[#2,4]

	[(lastIndVERTEX,2)]

	9

	1

	16

	17

	[#3,1]

	[(offsetIndVERTEX,3)+1]

	10

	3

	17

	18

	[#3,2]

	

	11

	6

	18

	20

	[#3,3]

	

	12

	2

	20

	23

	[#3,4]

	[(lastIndVERTEX,3)]

	13

	4

	23

	24

	[#4,1]

	[(offsetIndVERTEX,4)+1]

	14

	1

	24

	25

	[#4,2]

	

	15

	2

	25

	28

	[#4,3]

	

	16

	5

	28

	30

	[#4,4]

	[(lastIndVERTEX,4)]

Table 2.19 VertexInfo definitions

	

	

	FEMVertexID:

	Topologically unique global vertex ID, includes periodicity (needed for a FEM solver)

	offsetIndVERTEXConnect/lastIndVERTEXConnect:

	Each local element vertex has a range of neighbor element edgvertices in the VertexConnectInfo array.

Table 2.20 VertexConnect Information

	

	

	Name in file:

	VertexConnectInfo

	Type:

	INTEGER, Size: Array(1:2,1:nFEMVertexConnections)

	Description:

	Array of connected vertices, all information of one vertex is stored continuously

	

	in the range offsetIndVERTEXConnect+1:lastIndVERTEXConnect in VertexInfo

Table 2.21 VertexConnecInfo array for example mesh with 4 elements.

	

	(+/- master/slave) nbElemID

	localNodeID

	[#ElemID,locVertexID,FEMVertexID]

	[in VertexInfo]

	1

	- 4

	4

	[#1,1,5]

	[(offsetIndVERTEXConnect,1)+1]

	2

	- 2

	4

	[#1,1,5]

	[(lastIndVERTEXConnect,1)]

	3

	- 2

	3

	[#1,2,6]

	[(offsetIndVERTEXConnect,2)+1]

	4

	- 3

	3

	[#1,2,6]

	[(lastIndVERTEXConnect,2)]

	5

	- 3

	2

	[#1,3,3]

	[(offsetIndVERTEXConnect,3)+1]

	6

	- 4

	1

	[#1,4,4]

	[(offsetIndVERTEXConnect,4)+1]

	7

	- 4

	3

	[#2,1,2]

	[(offsetIndVERTEXConnect,5)+1]

	8

	- 3

	4

	[#2,1,2]

	

	9

	- 2

	2

	[#2,1,2]

	[(lastIndVERTEXConnect,5)]

	10

	- 4

	3

	[#2,2,2]

	[(offsetIndVERTEXConnect,6)+1]

	11

	- 3

	4

	[#2,2,2]

	

	12

	+ 2

	1

	[#2,2,2]

	[(lastIndVERTEXConnect,6)]

	13

	+ 1

	2

	[#2,3,6]

	[(offsetIndVERTEXConnect,7)+1]

	14

	- 3

	3

	[#2,3,6]

	[(lastIndVERTEXConnect,7)]

	15

	+ 1

	1

	[#2,4,5]

	[(offsetIndVERTEXConnect,8)+1]

	16

	- 4

	4

	[#2,4,5]

	[(lastIndVERTEXConnect,8)]

	17

	+ 4

	2

	[#3,1,1]

	[(offsetIndVERTEXConnect,9)+1]

	18

	+ 1

	3

	[#3,2,3]

	[(offsetIndVERTEXConnect,10)+1]

	19

	+ 1

	2

	[#3,3,6]

	[(offsetIndVERTEXConnect,11)+1]

	20

	- 2

	3

	[#3,3,6]

	[(lastIndVERTEXConnect,11)]

	21

	- 2

	2

	[#3,4,2]

	[(offsetIndVERTEXConnect,12)+1]

	22

	+ 2

	1

	[#3,4,2]

	

	23

	- 4

	3

	[#3,4,2]

	[(lastIndVERTEXConnect,12)]

	24

	+ 1

	4

	[#4,1,4]

	[(offsetIndVERTEXConnect,13)+1]

	25

	- 3

	1

	[#4,2,1]

	[(offsetIndVERTEXConnect,14)+1]

	26

	+ 2

	1

	[#4,3,2]

	[(offsetIndVERTEXConnect,15)+1]

	27

	- 2

	2

	[#4,3,2]

	

	28

	- 3

	4

	[#4,3,2]

	[(lastIndVERTEXConnect,15)]

	29

	+ 1

	1

	[#4,4,5]

	[(offsetIndVERTEXConnect,16)+1]

	30

	- 2

	4

	[#4,4,5]

	[(lastIndVERTEXConnect,16)]

Table 2.22 VertexConnectInfo definitions

	

	

	nbElemID:

	element ID of connected element via the vertex. Sign refers if the neighbor vertex is master or slave (+ master / - slave)

	

	from the master slave information, the master/slave of the elements’ vertex can be deduced

	nbLocVertexID:

	local vertex ID in neighbor element.

2.3.7. Node Coordinates and Global Index

Table 2.23 NodeCoords

	

	

	Name in file:

	NodeCoords

	Type:

	REAL \quad Size: Array(1:3,1:nNodes\(^*\))

	Description:

	The coordinates of the nodes of the element, as a set for each element.

	

	offsetIndNODE/lastIndNODE in ElemInfo refers to the row index of one set of element nodes.

Table 2.24 GlobalNodeIDs

	

	

	Name in file:

	GlobalNodeIDs

	Type:

	INTEGER \quad Size: Array(1:nNodes\(^*\))

	Description:

	The unique global node identifier corresponding to the node at the same array position in NodeCoords.

The node list contains the high order nodes of the element, so the number of nodes per element depends on the polynomial degree of
the element mapping \(N_{geo}\). From this list, the corner nodes can be extracted. The details of the node ordering are explained in
Section Element High Order Nodes. It is important to note that in the case of \(N_{geo}=1\), our node ordering does NOT correspond to the CGNS
corner node ordering for pyramids and hexahedra. Note that the nodes are multiply stored because of the parallel I/O, and
therefore the GlobalNodeID is needed for a unique node indexing.

The NodeCoordsand GlobalNodeIDs array for the example mesh Fig. 2.1 with 4 elements is given in table Table 2.25.
The node ordering is explained in Section Element High Order Nodes.

Table 2.25 NodeCoords and GlobalNodeIDs array for the example mesh.

	NodeCoords

	

	GlobalNodeIDs

	in ElemInfo

	\((x,y,z)_{ 5}\)

	

	5

	(offsetIndNODE,1)+1

	\((x,y,z)_{ 3}\)

	

	3

	

	\((x,y,z)_{ 4}\)

	

	4

	

	\((x,y,z)_{11}\)

	

	11

	

	\((x,y,z)_{ 9}\)

	

	9

	

	\((x,y,z)_{ 6}\)

	

	6

	(lastIndNODE,1)

	\((x,y,z)_{ 1}\)

	

	1

	(offsetIndNODE,2)+1

	\((x,y,z)_{ 2}\)

	

	2

	

	\((x,y,z)_{ 5}\)

	

	5

	

	\((x,y,z)_{ 3}\)

	

	3

	

	\((x,y,z)_{ 7}\)

	

	7

	

	\((x,y,z)_{ 8}\)

	

	8

	

	\((x,y,z)_{11}\)

	

	11

	

	\((x,y,z)_{ 9}\)

	

	9

	(lastIndNODE,2)

	\((x,y,z)_{11}\)

	

	11

	(offsetIndNODE,3)+1

	\((x,y,z)_{ 9}\)

	

	9

	

	\((x,y,z)_{ 6}\)

	

	6

	

	\((x,y,z)_{10}\)

	

	10

	(lastIndNODE,3)

	\((x,y,z)_{ 7}\)

	

	7

	(offsetIndNODE,4)+1

	\((x,y,z)_{ 8}\)

	

	8

	

	\((x,y,z)_{11}\)

	

	11

	

	\((x,y,z)_{ 9}\)

	

	9

	

	\((x,y,z)_{10}\)

	

	10

	(lastIndNODE,4)

2.3.8. Boundary Conditions

Table 2.26 BCNames

	

	

	Name in file:

	BCNames

	Type:

	STRING, \quad Size: Array(1:nBCs)

	Description:

	User-defined list of boundary condition names.

Table 2.27 BCType

	

	

	Name in file:

	BCType

	Type:

	INTEGER, \quad Size: Array(1:4,1:nBCs)

	Description:

	User-defined array of 4 integers per boundary condition.

The boundary conditions are completely defined by the user. Each BCID from the SideInfo array refers to the position of the
boundary condition in the BCNames list. An additional 4 integer code in BCType is available for user-defined attributes.

Table 2.28 BCNames and BCType array for the example mesh, representing a list of boundary condition names.

	Ind

	Boundary Conditions Name:

	

	BCType

	1

	lowerWall

	

	(4,0,0,0)

	2

	Inflow

	

	(2,0,0,0)

	3

	OutflowRight

	

	(10,0,0,0)

	4

	OutflowLeft

	

	(8,0,0,0)

The BCType array consists of the following entries, of which some are specific to HOPR:

Table 2.29 BCType = \(\big(\)\emph{ BoundaryType, CurveIndex, StateIndex, PeriodicIndex} \(\big)\)

	

	

	BoundaryType:

	Actual type of boundary condition (e.g. inflow, outflow, periodic). {Reserved values:} BoundaryType=1 is reserved for periodic boundaries and BoundaryType=100 is reserved for “inner” boundaries or “analyze sides”. For these two cases the sides in the SideInfo array will have a neighbor side/element/flip specified, all other sides with BCs are not connected!

	CurveIndex:

	Geometry tag used to distinguish between multiple BCs of the same type, e.g. to specify the original CAD surface belonging to the mesh side. Also used to control some mesh curving features, sides with CurveIndex\(>\)0 are curved, while sides with CurveIndex=0 are mostly (bi-) linear.

	StateIndex:

	Specifies the index of a reference state to be used inside the solver. This value is completely used-defined and will not be used/checked/modified by HOPR.

	PeriodicIndex:

	Only relevant for periodic sides, ignored for others. For periodic connections two boundary conditions are required, having the same absolute PeriodicIndex, one with positive, the other with negative sign.

2.4. Parallel Read-in

The overall parallel read-in process is depicted in Fig. 2.3.
The Algorithms Fig. 2.4, Fig. 2.5, Fig. 2.6 describe how to open and close a HDF5 file and read the file attributes.

Each parallel process (MPI rank) has to read a contiguous element range, which will be basically defined by dividing the total
number of elements by the number of domains, already leading to the domain decomposition. The element distribution is computed
locally on each rank. Follow Fig. 2.7 for an equal distribution of an arbitrary number of elements on an arbitrary number of
domains/ranks. The algorithm is easy to extend to account for different element weights. The element distribution is saved in the
offsetElem array of size 0:nDomains. The element range for each domain (mydom\(\in\)[0:nDomains-1]) is then

ElementRange(myDom)=[offsetElem(myDom)+1;offsetElem(myDom+1)]

Note that the offsetElem array will have the information of all element ranges of all ranks, which is very helpful for building
the inter-domain mesh connectivity to quickly find neighbor elements on other domains/ranks.

Using the number of local elements and the offset, we read the non-overlapping sub-arrays of the ElemInfo array in parallel
(using hyperslab HDF5 commands, see Fig. 2.8), which will assign a continuous sub-array of element informations for each
rank. With the local element informations, we easily compute the offset and size of sub-arrays for the side data (SideInfo) and
node data (NodeCoords), by computing

	

	

	firstElem =

	offsetElem(myDom)+1

	lastElem =

	offsetElem(myDom+1)

	firstSide =

	ElemInfo (offsetIndSIDE,firstElem)+1

	lastSide =

	ElemInfo (lastIndSIDE,lastElem)

	firstNode =

	ElemInfo (offsetIndNODE,firstElem)+1

	lastNode =

	ElemInfo (lastIndNODE,lastElem)

and again read the non-overlapping sub-arrays in parallel.
Now element geometry is easily built locally.
Local element connectivities would only have neighbor element indices inside the local element range and can directly be assigned.
The overall read-in process is summarized in Fig. 2.9.

For the inter-domain connectivity, we have to find the domain containing the neighbor element.
A quick search is done with a bisection of the offsetElem array, since element ranges are monotonically increasing, see
Fig. 2.10.

Finally, we group the sides connected to each neighbor domain and sort the sides along the global side index (known from
SideInfo). This creates the same side list on both domains without any communication.
If an orientation of the side link is needed, the side is always marked either master or slave (positive or negative global side
index).

[image: ../_images/parallel_readin.jpg]

Fig. 2.3 Parallel read-in process of the HDF5 mesh file, exemplary with 8 elements on 3 MPI ranks domains.

[image: ../_images/algorithm1.png]

Fig. 2.4 Algorithm 1

[image: ../_images/algorithm2.png]

Fig. 2.5 Algorithm 2

[image: ../_images/algorithm3.png]

Fig. 2.6 Algorithm 3

[image: ../_images/algorithm4.png]

Fig. 2.7 Algorithm 4

[image: ../_images/algorithm5.png]

Fig. 2.8 Algorithm 5

[image: ../_images/algorithm6.png]

Fig. 2.9 Algorithm 6

[image: ../_images/algorithm7.png]

Fig. 2.10 Algorithm 7

2.5. Element Definitions

2.5.1. Element Types

The classification of the element types is given in Table 2.30.
The last digit is always the number of corner nodes. The classification is geometrically motivated.
The element has a linear mapping if \(N_{geo}=1\) and the corner nodes are an affine transformation of the reference element corner
nodes, whereas bilinear stands for the general straight-edged element with \(N_{geo}=1\), and non-linear for the high order case
\(N_{geo} \ge 1\).

For mesh file read-in, only the number of element corner nodes is important to distinguish the 3D elements, since the polynomial
degree \(N_{geo}\) is globally defined.

Table 2.30 Element type encoding.

	ElementType

	Index

	ElementType

	Index

	ElementType

	Index

	Triangle, linear

	3

	Tetrahedron, linear

	104

	Prism, bilinear

	116

	Quad, linear

	4

	Pyramid, linear

	105

	Hexahedron, bilinear

	118

	

	

	Prism, linear

	106

	Tetrahedron, non-linear

	204

	Quad, bilinear

	14

	Hexahedron, linear

	108

	Pyramid, non-linear

	205

	Triangle, non-linear

	23

	

	

	Prism, non-linear

	206

	Quad, non-linear

	24

	Pyramid, bilinear

	115

	Hexahedron, non-linear

	208

2.5.2. Element High Order Nodes

In the arrays NodeCoords and GlobalNodeIDs (Section Node Coordinates and Global Index), the
element high order nodes are found as a node list, \(1,\dots,\ell,\dots M_\text{elem}\). The number of nodes for each element is
defined by the element type and the polynomial degree \(N_{geo}\) of the mapping and is listed in Table 2.31. See
Section Element Corners, Sides if one needs only the corner nodes of the linear mesh.

Table 2.31 Element node count.

	Element Type:

	#Corner nodes

	#HO nodes (\(M_\text{elem}\))

	Triangle

	3

	\(\frac{1}{2}(N_{geo}+1)(N_{geo}+2)\)

	Quad

	4

	\((N_{geo}+1)^2\)

	Tetrahedron

	4

	\(\frac{1}{6}(N_{geo}+1)(N_{geo}+2)(N_{geo}+3)\)

	Pyramid

	5

	\(\frac{1}{6}(N_{geo}+1)(N_{geo}+2)(2N_{geo}+3)\)

	Prism

	6

	\(\frac{1}{2}(N_{geo}+1)^2(N_{geo}+2)\)

	Hexhedron

	8

	\((N_{geo}+1)^3\)

The mapping from the node list to the node position

\[
 \ell\mapsto(i,j,k)\,\quad \ell\in[1;M_\text{elem}]\,\quad 0\leq i,j,k \leq N_{geo}
\]

is defined by Fig. 2.12 and an example is shown for quadratic mapping in Fig. 2.11.
The high order node positions are regular in reference space \(-1\leq (\xi,\eta,\zeta) \leq 1 \) and therefore can be easily computed
from the \((i,j,k)\) index of the node \(\ell\) by

\[
 (\xi,\eta,\zeta)_\ell=-1+\frac{2}{N}(i,j,k)_\ell
\]

[image: ../_images/HOnodes.jpg]

Fig. 2.11 Example of the element high order node sorting from Fig. 2.12 for a quadratic mapping (\(N_{geo}=2\)).

[image: ../_images/algorithm8.png]

Fig. 2.12 Algorithm 8

2.5.3. Element Corners, Sides

To define the element corner nodes, the side order and side connectivity, we follow the standard from CGNS SIDS (CFD General
Notation System, Standard Interface Data Structures, [http://cgns.sourceforge.net/][http://cgns.sourceforge.net/]).
The definition is sketched in Fig. 2.13.
To get the CGNS corner nodes from the high order node list, follow Fig. 2.14.
Note that in the case of \(N_{geo}=1\), the node ordering does not correspond to the CGNS corner node ordering for pyramids and
hexahedra!

Especially, the CGNS standard defines a local coordinate system of each element side. The side’s first node will be the origin, and
the remaining nodes are ordered in the direction of the outward pointing normal.

[image: ../_images/CGNS_edges.jpg]

Fig. 2.13 Definition of corner nodes, side order and side orientation, from CGNS SIDS.

[image: ../_images/algorithm9.png]

Fig. 2.14 Algorithm 9

2.5.4. Element Connectivity

In the SideInfo array, we explicitly store the side-to-side connectivity information between elements, consisting of the
neighbor element ID, the local side of the neighbor and the orientation, encoded with the variable flip.
Using the local side system, the orientation between elements boils down to three cases for a triangular element side and four for
a quadrilateral element side. The definition is given in Fig. 2.15.
Also note that the flip in Table 2.32 is symmetric, having the same value if seen from the neighbor side.

Table 2.32 Side-to-side connection (flip)

	

	

	

	flip\(=1\):

	\(1^{st}\)

	node of neighbor side = \(1^{st}\) node of side

	flip\(=2\):

	\(2^{nd}\)

	node of neighbor side = \(1^{st}\) node of side

	flip\(=3\):

	\(3^{rd}\)

	node of neighbor side = \(1^{st}\) node of side

	flip\(=4\):

	\(4^{th}\)

	node of neighbor side = \(1^{st}\) node of side

[image: ../_images/flip.jpg]

Fig. 2.15 Definition of the orientation of side-to-side connection (flip) for quadrilateral and triangular element sides, the
numbers are the local order of the element side nodes, as defined in Section Element Corners, Sides.

2.6. Additional Extensions: Hanging Node Interface

For complex geometries it is often desirable to use elements with hanging nodes to provide more geometric flexibility when meshing.
As geometric restrictions are most severe for pure hexahedral meshes, the HOPR format supports a limited octree-like topology with
hanging nodes for purely hexahedral meshes. The octree topology is implemented as extension to the existing mesh structure.
While full octrees permit an element-side to have an arbitrary number of neighbors on various octree levels, our format supports
only one octree level difference between element sides with two (anisotropic) and four neighbors, the single types are depicted in
Fig. 2.16.

[image: ../_images/Mortar_Types.jpg]

Fig. 2.16 Possible types of mortar interfaces, with \(\xi,\eta\) denoting the sides local parameter space.

For the connection of two elements over an octree level additional interfaces are required, which are termed mortar interfaces and
are depicted in Fig. 2.17.
Thereby the big side is denoted big mortar master side, the intermediate sides are denoted small mortar master sides. The sides of
the small elements are denoted slave sides. Note that they do not require any information about the mortar interface and therefore
the interface is only represented from the big element side in the data format.

[image: ../_images/mortar_structure.jpg]

Fig. 2.17 Structure of the mortar interface, with the local mortar ID defined from \(0-4\)

The following differences are present for the ElemInfo and the SideInfo array:

2.6.1. Changes to Existing Data Format

	ElemInfo: The range of sides defined by offsetIndSIDE and lastIndSIDE now includes the small mortar master sides for the element that owns the big mortar side.

	SideInfo: The field nbElemID of the big mortar side defines no connection to the neighbor element, but contains the type of the mortar interface (=1/2/3) from Fig. 2.16 with negative sign, to mark that the following sides belong to a mortar interface. The type of the interface defines the number of the small mortar master sides (Type 1 has 4 and Type 2&3 have 2 small master sides).

	SideInfo: The list of sides belonging to an element includes the small mortar master sides sorted as exemplified in Table 2.33 and Fig. 2.17.

	SideInfo: Only the small mortar masters have a valid nbElemID, defining the connection to the adjacent small elements.

	SideInfo: (Mortar) Master sides always have flip=0, thus the small element sides are always slave sides.

	SideInfo: If the element side belongs to a mortar but with the small mortar slave side, it is marked as such using a SideType with negative sign.

Table 2.33 Sorting example for sides in SideInfo, for an element containing two mortar interfaces of type 1 and type 2/3. Note that local SideID and MortarID are not stored in SideInfo.

	Global SideID

	local SideID

	local MortarID

	42

	1

	0

	43

	1

	1

	44

	1

	2

	45

	1

	3

	46

	1

	4

	47

	2

	0

	48

	3

	0

	49

	3

	1

	50

	3

	2

	51

	4

	0

	52

	5

	0

	53

	6

	0

2.6.2. Additional Information for Octrees

In addition to the existing format defined above, the mortar format contains non-necessary additional information concerning the
octrees. It contains the octree node coordinates and a mapping of the element to the octrees.
Note that the polynomial degree of the element mapping is defined as \(N_{geo}\), while the octrees may have an independent polynomial
degree \(N_{g,tree}\). Elements and trees can be identical in case the element is on the lowest octree level and the polynomial
degrees are identical.

2.6.2.1. Octree Global Attributes

In addition to the global attributes defined in Section Global Attributes, the non-conforming mesh
format includes the following attributes.

Table 2.34 Additional mesh file attributes for octrees.

	Attribute

	Data type

	Description

	IsMortarMesh

	INTEGER

	Identify mesh as a mortar mesh, if present

	NgeoTree \(\geq 1\)

	INTEGER

	Polynomial degree \(N_{g,tree}\) of tree mapping, used to determine the number of nodes per element

	nTrees

	INTEGER

	Total number of octrees

	nNodesTree

	INTEGER

	Total number of tree nodes: \((N_{g,tree}+1)^3 \cdot nTrees\)

2.6.2.2. Mapping of the Global Element Index (ElemID) to the Octree Index (TreeID)

	

	

	Name in file:

	ElemToTree

	Type:

	INTEGER \(\quad\) Size: Array(1:nElems\(^*\))

	Description:

	The mapping from the global element index (ElemID) to its corresponding octree index (TreeID) if applicable.

2.6.2.3. Element Bounds in Tree Reference Space

	

	

	Name in file:

	xiMinMax

	Type:

	REAL \(\quad\) Size: Array(1:3,1:2,1:nElems\(^*\))

	Description:

	The array contains the element bounds in the tree reference space \([-1,1]^3\) given by the minimum (1:3,1,ElemID) and maximum (1:3,2,ElemID) corner nodes.

2.6.2.4. Node Coordinates of the Octrees

	

	

	Name in file:

	TreeCoords

	Type:

	REAL \(\quad\) Size: Array(1:3,nNodesTree\(^*\))

	Description:

	The coordinates of the nodes of the tree, as a set for each tree.

3. Appendix

3.1. Tested compiler combinations

	Dev

	Version (Date)

	System

	Compiler

	HDF5 (pre-compiled)

	MPI

	CMake

	CGNS (pre-compiled)

	Notes

	XX

	XX (Nov X)

	Laptop Ubuntu 22.04

	gnuX.X.X

	X.X.X

	openmpi-X.X.X

	X.X.X

	X.X.X

	Does not work with more than 3 processors

	SC

	1.0.0 (Dec 14)

	Laptop Ubuntu 22.04.1 LTS

	gcc12.2.0

	1.12.0 (no)

	OFF

	3.24.2

	v3.4.1 (no)

	

	SC

	1.0.0 (Dec 14)

	Laptop Ubuntu 22.04.1 LTS

	gcc12.2.0

	12.2.0 (yes, configure)

	OFF

	3.24.2

	v3.4.1 (no)

	

4. List of Parameters

Table 4.1 List of parameters

	Parameters

	Example

	Data Type

	Array Dim.

	Default Value

	Description

	BCIndex

	BCIndex=(/1,2,3,4,5,6/)

	Int

	6

	MANDATORY

	The parameter assigns a bondary condition to each surface of the cartesian box in order of the surfaces. The number of a vector’s component represents the nth boundary condition in order of its position in the file. Hence, each position refers to the six box sides (/z-,y-,x+,y+,x-,z+/). In this example six different boundary conditions were assigned to the box surfaces. In case of a boundary condition defined on several faces, the components belonging to these faces will be equal in the BCIndex vector. In case of multiple cartesian boxes there are surfaces which coincide with other ones. To such surfaces no boundary condition can be assigned. Therefore, the number of the corresponding vector’s component is set to 0. For example, if all components of the parameter BCIndex are set to (/0,0,0,0,0,0/) the box will be surrounded completely by six other boxes so that no boundary condition can be assigned to a single surface.

 Developer Guide

Developer Guide

The developer guide is intended to be for people who come in more close contact with HOPR, i.e., code developers and performance
analysts as well as people who are tasked with working or extending the documentation of HOPR.

Table of Contents

	1. Github Workflow

	2. Style Guide

	3. Building the Documentation

	4. Compiler Options

	5. Building the AppImage Executable

	6. Troubleshooting

	7. Markdown Examples

This guide is organized to guide the first implementation steps as well as provide a complete overview of
the simulation code’s features from a developer’s point of view.

	The first Chapter Github Workflow shall give an overview over the development workflow within
the GitHub environment, and the necessary steps to create a release and deploy updates to GitHub.

	The second Chapter Style Guide describes the rules and guidelines regarding code development
such as how the header of functions and subroutines look like.

	Chapter Building the Documentation describes how to build the html and pdf files
locally before committing changes to the repository.

	Chapter Compiler Options gives an overview of compiler options that are used in HOPR and their purpose.

	Chapter Building the AppImage Executable described how an AppImage executable of HOPR is created.

	Chapter Markdown Examples gives a short overview of how to include code, equations, figures, tables
etc. in the user and developer guides in Markdown.

 1. Github Workflow

1. Github Workflow

Code development is performed on the Github platform [https://github.com/hopr-framework/hopr], with the protected master and
master.dev branches. The actual development is performed on feature branches, which can be merged to master.dev following a
merge request and the completion of a merge request checklist. After a successful pass of the nightly and weekly regression test,
the master.dev can be merged into the master. A merge of the master.dev to the master should be associated with a release
tag, where the changes to previous version are summarized.

In the following the envisioned development process using issues and milestones, the release & deploy procedure as well as other
developer relevant issues are discussed.

1.1. Issues & Milestones

Issues are created for bugs, improvements, features, regression testing and documentation. The issues should be named with a few
keywords. Try to avoid describing the complete issue already in the title. The issue can be assigned to a certain milestone
(if appropriate).

Milestones are created based on planned releases (e.g. Release 1.2.1) or as a grouping of multiple related issues (e.g.
Documentation Version 1, Clean-up Emission Routines). A deadline can be given if applicable. The milestone should contain a short
summary of the work performed (bullet-points) as its contents will be added to the description of the releases. Generally, merge
requests should be associated with a milestone containing a release tag, while issues should be associated with the grouping milestones.

As soon as a developer wants to start working on an issue, she/he shall assign himself to the issue and a branch and merge request
denoted as work in progress (WIP: ...) should be created to allow others to contribute and track the progress. For this purpose,
it should be created directly from the web interface within the issue (Create merge request). This creates a branch, naming it
automatically, leading with the issue number (e.g. 60-fix-boundary-condition) and associates the branch and merge request to the
issue (visible in the web interface below the description). To start working on the issue, the branch can be checked out as usually.

Ideally, issues should be created for every code development for documentation purposes. Branches without an issue should be avoided
to reduce the number of orphaned/stale branches. However, if branches are created outside of the issue context, they should be named
with a prefix indicating the purpose of the branch, according to the existing labels in Github. Examples are given below:

feature.chemistry.polyatomic
improvement.tracking.curved
bug.compiler.warnings
reggie.chemistry.reservoir
documentation.pic.maxwell

Progress tracking, documentation and collaboration on the online platform can be enabled through creating a merge request with the
WIP prefix for this branch instead of an issue. An issues created afterwards cannot be associated with an already created branch,
without renaming the branch to include the issue number at the beginning. However, this should be avoided.

1.2. Merge Request

Merge requests that are not WIP are discussed every Monday by the developer group to be considered for a merge. The following
checklist has to be completed before a merge request should be approved. For bugs only the first points have to be considered,
while for features and improvements the complete list has to be completed. The Feature merge request template considers the
following bullet points

	[] Style Guide

	[] Maximum of 10 compile warnings via ./tools/test_max_warnings.sh. How many warning were found?

	[] Descriptions for new/changed routines

	[] Short header description (do not just spell out the name of the subroutine, units for important variables if applicable)

	[] Workflow

	[] Short summary in the header

	[] Inside the routine at the appropriate positions

	[] Reggie

	[] Add small test setup

	[] Add entry in REGGIE.md table

	[] Check automatic restart functionality of reggie example via Load Balance (checks correct allocation and deallocation for the test case)

	[] New feature description in appropriate documentation (user/developer guide)

	[] Check that no large files were added to the repository

For this purpose, the developer can select the respective template for his merge request (Bug: only first two to-do’s or Feature:
all to-do’s, Improvements can utilize either depending on the nature of the improvement). The appropriate checklist will then
be displayed as the merge request description. Merge requests generated automatically through the Issues interface have already
Closes #55 as a description. When editing the merge request, the description gets overwritten by the template. Thus, the issue
number has to be added manually after the template is chosen. The templates for merge requests are stored in ./.Github/merge_request_templates/.

1.3. Release and deploy

A new release version of HOPR is created from the master repository, which requires a merge of the current master.dev
branch into the master branch. The corresponding merge request should be associated with a release milestone (e.g. Release
1.X.X within which the merge request is referenced, e.g., “See merge request !283”). Within this specific merge request, the
template Release is chosen, which contains the to-do list as well as the template for the release notes as given below.
After the successful completion of all to-do’s and regression checks (check-in, nightly, weekly), the master.dev branch can be
merged into the master branch.

1.3.1. Release Tag

A new release tag can be created through the web interface (Repository -> Tags [https://Github.com/HOPR/HOPR/tags] -> New tag)
and as the Tag name, the new version number is used, e.g.,

v1.X.X

The tag is then created from the master branch repository and the Message is left empty. The release notes, which were used
within the corresponding milestone, shall be given in the following format

Release 1.X.X

Documentation

* Added section about particle emission

Reggie

* Added a regression test of the chemistry routine

Features

* Skipping field update for the HDG solver for user-defined number of iterations

Improvements

* Speed-up by skipping/cycle over neutral particles in deposition

Fixes

* Treatment of non-linear polyatomic molecules during analyze and wall interaction

Headlines without changes/additions within a release can be omitted.

1.3.2. Collaborative Numerics Group

The collaborative numerics group for HOPR is located at https://Github.com/collaborative-numerics-group/HOPR.
There are two possible ways of sharing code with other people and are explained in the following.

1.3.2.1. Single master branch repository

Method 1 involves a single master branch that is updated from the internal HOPR repository, similar
to the repository of HOPR at github.com.

The master branch of development group can be merged after the successful regression check with the master of the collaborative group.
For this purpose, the collaborative repository can be added as a remote (this step has only to be performed once)

git remote add remote_name git@Github.com:collaborative-numerics-group/HOPR/HOPR.git

First, make sure to have the most recent version of the master branch (of the development repository)

git checkout master && git pull

Now you can checkout the most recent version of the master branch of the collaborative-numerics-group and create a local branch
with that version (performing only a simple checkout will create a detached HEAD state)

git fetch
git checkout -b branch_name remote_name/master

The master branch of the development repository can now be merged into the newly created branch

git merge origin/master

Finally, the changes can be pushed from the local branch branch_name to the master of collaborative-numerics-group

git push remote_name master

If a tag has also been created, it should be pushed separately.

git push remote_name tag_name

Afterwards, the local branch branch_name can either be deleted or utilized for future merges

git branch -d branch_name

1.3.2.2. Pushing each branch to a separate repository

Method 2 involves pushing each development branch from the internal HOPR repository to a separate
repository in the HOPR CRG separately.

Extract solely a single branch by cloning only myfeaturebranch via

git clone -b myfeaturebranch --single-branch git@Github.com:HOPR/HOPR.git HOPR ;

Navigate to the newly created directory

cd HOPRs_new_CRG

Push this repository that only contains one branch to the CRG via

git push --mirror git@Github.com:collaborative-numerics-group/HOPRs/HOPRs.myfeaturebranch.git

which created a new repository that only contains the desired feature branch. When sharing this new
repository with new people, simply add them as members of this new repository (not the complete
CRG!).

1.3.3. GitHub

Finally, the release tag can be deployed to GitHub. This can be achieved by running the Deploy script in the
CI/CD -> Schedules [https://Github.com/HOPRs/HOPRs/pipeline_schedules] web interface. At the moment, the respective tag and the
release have to be created manually on GitHub through the web interface with HOPRs-framework account. The releases are
accessed through Releases [https://github.com/HOPRs-framework/HOPRs/releases] and a new release (including the tag) can be
created with Draft a new release. The tag version should be set as before (v1.X.X) and the release title accordingly
(Release 1.X.X). The release notes can be copied from the Github release while omitting the ## Release 1.X.X headline as it was
given with the release title before.

 2. Style Guide

2. Style Guide

	Why do we need a style guide?

	It creates a unified appearance and coding structure

	It makes the code more understandable and therefore important information is understood more
easily

	It forces the developers to think more actively about their work

	General rules

	Coding language: English

	A maximum of 132 characters are allowed per line (incl. Comments)

	Indentation: 2 spaces (no tabs!)

	Line breaks in comments -> the following line must be indented appropriately

	Comments of modules and input-/output variables: Doxygen style

	Comments of preprocessor directives in C-Style

2.1. Header of Functions and Subroutines

Function calls must always supply the variable name of optional arguments. Always use USE statements with ONLY

USE MODULE, ONLY: ...

this accounts for variables and function/subroutines. An exception are the initialization and finalization routines.

!==
!> \brief Fills the solution array U with a initial solution.
!>
!> Fills the solution array U with a initial solution provided by the ExactFunc subroutine through interpolation. Function is
!> specified with the IniExactFunc paramter.
!==
SUBROUTINE FillIni(NLoc,xGP,U)
!--
! MODULES
USE MOD_PreProc
USE MOD_Equation_Vars ,ONLY: IniExactFunc
USE MOD_Exactfunc ,ONLY: ExactFunc
USE MOD_Mesh_Vars ,ONLY: nElems
IMPLICIT NONE
!--
! INPUT/OUTPUT VARIABLES
INTEGER,INTENT(IN) :: NLoc !< Polynomial degree of solution
REAL,INTENT(IN) :: xGP(3, 0:NLoc,0:NLoc,0:NLoc,nElems) !< Coordinates of Gauss-points
REAL,INTENT(OUT) :: U(1:PP_nVar,0:NLoc,0:NLoc,0:NLoc,nElems) !< Solution array
!--
! LOCAL VARIABLES
INTEGER :: i,j,k,iElem
!==

! Evaluate the initial solution at the nodes and fill the solution vector U.
DO iElem=1,nElems
 DO k=0,NLoc; DO j=0,NLoc; DO i=0,NLoc
 CALL ExactFunc(IniExactFunc,0.,xGP(1:3,i,j,k,iElem),U(:,i,j,k,iElem))
 END DO; END DO; END DO
END DO
END SUBROUTINE FillIni

The separators !==== and !---- are exactly 132 characters long (here they have been shortened for visualization purposes).

2.2. Variables

	Preprocessor variables: PP_$var

PP_nVar

Note that

	USE MOD_Preproc cannot be used with ONLY because the pro-processor flags sometimes result in constants and not variables

	PP_N and other pre-processor variables that may be constants cannot be assigned in ASSOCIATE constructs

	Counters: the counting variable (lower case) + description (the first character is capital case)

DO iVar=1,PP_nVar

	Variables generally begin with a capital letter (composite words also)

ActualElem

	Dimension allocations must be specified by giving both a lower and an upper boundary

ALLOCATE(U(1:PP_nVar,0:NLoc,0:NLoc,0:NLoc,nElems))

	When using single characters: small at the beginning when using composite words otherwise in
capital letters. Both is possible when purely single characters are used. Exceptions are allowed in
special cases, but they are not recommended.

hTilde, TildeH, (Elem%U)

2.3. Functions and Control Structures

	User-defined functions and subroutines should carry meaning in their name. If their name is
composed of multiple words, they are to be fused together without underscores (_) and the
first letter of each words should be capital.

GetParticleWeight(), isChargedParticle()

An exception to this rule is the usage of underscores (_) for shared memory arrays, where
_Shared indicates that the property is available to all processors on the same shared-memory
domain (generally a node).
Furthermore, the words Get, get, Is, is, Do, do indicate the intention of the
function/subroutine in supplying or acquiring specific properties or values.
User-defined functions and subroutines should not, in general, be named in all-capital letters.

	FORTRAN intrinsics generally in capital letters

ALLOCATE(), DO, MAX(), SQRT(), INT(), etc.

	END-X is to be separated by a space

END DO, END IF, END SUBROUTINE

	For loops and IF statements etc. comments are to be inserted at the end (and in-between, e.g. when
ELSE IF is used)

DO iVar=1,PP_nVar
 IF (a.EQ.b) THEN
...
 ELSE ! a.NE.b
...
 END IF ! a.EQ.b
...
END DO ! PP_nVar

2.4. Workflow Description

Additionally to the header description, a short workflow table of contents at the beginning of the
subroutine or function is required for longer subroutines in which multiple tasks are completed.
Example:

! ---
! MAIN STEPS []=FV only
! ---
! 1. Filter solution vector
! 2. Convert volume solution to primitive
! 3. Prolong to face (fill U_master/slave)
! 4. ConsToPrim of face data (U_master/slave)
![5.] Second order reconstruction for FV
! 6. Lifting
! 7. Volume integral (DG only)
![8.] FV volume integral
! 9. IF EDDYVISCOSITY: Prolong muSGS to face and send from slave to master
! 10. Fill flux (Riemann solver) + surface integral
! 11. Ut = -Ut
! 12. Sponge and source terms
! 13. Perform overintegration and apply Jacobian
! ---

Furthermore, the steps are required to be found at the appropriate position within the code. It is
not allowed to just incorporate the corresponding number of the step within the code.

! (0. Nullify arrays)
! NOTE: UT and U are nullified in DGInit, and Ut is set directly

! 1. Filter the solution vector if applicable, filter_pointer points to cut-off
IF(FilterType.GT.0) CALL Filter_Pointer(U,FilterMat)

! 2. Convert Volume solution to primitive
CALL ConsToPrim(PP_N,UPrim,U)

! X. Update mortar operators and neighbour connectivity for the sliding mesh
CALL PrepareSM()

! 3. Prolong the solution to the face integration points for flux computation
! --
! General idea: The slave sends its surface data to the master
! where the flux is computed and sent back to the slaves.
! Steps:
! (these steps are done for all slave MPI sides and then for all remaining sides):
! 3.1) Prolong solution to faces and store in U_master/slave.
! Use them to build mortar data (split into 2/4 smaller sides).
![3.2)] The information which element is a DG or FV subcells element is stored
! in FV_Elems per element.
![3.3)] The reconstruction of slopes over element interfaces requires,
! besides U_slave and FV_Elems_slave, some more information that
! has to be transmitted from the slave to the master MPI side.
! 3.4) Finish all started MPI communications (after step 2. due to latency hiding)

#if USE_MPI
! Step 3 for all slave MPI sides
! 3.1) Prolong solution to faces and store in U_master/slave.
! Use them to build mortar data (split into 2/4 smaller sides).
CALL StartReceiveMPIData(U_slave,DataSizeSide,1,nSides,MPIRequest_U(:,SEND),SendID=2) ! Receive MINE / U_slave: slave -> master
CALL StartReceiveSM_MPIData(PP_nVar,U_MorRot,MPIRequestSM_U,SendID=2) ! Receive MINE / U_slave: slave -> master
CALL ProlongToFaceCons(PP_N,U,U_master,U_slave,L_Minus,L_Plus,doMPISides=.TRUE.)
CALL U_MortarCons(U_master,U_slave,doMPISides=.TRUE.)
CALL U_MortarConsSM(U_master,U_slave,U_MorStat,U_MorRot,doMPISides=.TRUE.)
CALL StartSendMPIData(U_slave,DataSizeSide,1,nSides,MPIRequest_U(:,RECV),SendID=2) ! SEND YOUR / U_slave: slave -> master
CALL StartSendSM_MPIData(PP_nVar,U_MorRot,MPIRequestSM_U,SendID=2) ! SEND YOUR / U_slave: slave -> master
#if FV_ENABLED
! 3.2) The information which element is a DG or FV subcells element is stored
! in FV_Elems per element.
CALL FV_Elems_Mortar(FV_Elems_master,FV_Elems_slave,doMPISides=.TRUE.)
CALL StartExchange_FV_Elems(FV_Elems_slave,1,nSides,MPIRequest_FV_Elems(:,SEND),MPIRequest_FV_Elems(:,RECV),SendID=2)
#endif /* FV_ENABLED */

 3. Building the Documentation

3. Building the Documentation

The user and developer guides are built automatically via Read The Docs.
When changing the guides, build the html and pdf files locally before committing changes to the repository.

Prerequisites

The following shows how to create the html and pdf files for the user/developer guide.
First, install the required prerequisites. Install python3 and make sure that pip (third-party Python packages) is installed.
If you have an old version of, e.g., Ubuntu visit this website [https://phoenixnap.com/kb/how-to-install-python-3-ubuntu].

sudo apt install python3-pip

Navigate to the documentation folder from the HOPR top level directory

cd docs/documentation

Run pip to install the required extensions and packages for compiling the user guide (only once)

python3 -m pip install --exists-action=w --no-cache-dir -r requirements.txt

Make sure that latexmk is installed on the system for compiling the PDF version of the user guide. For Ubuntu, follow
this link [https://zoomadmin.com/HowToInstall/UbuntuPackage/latexmk] for installation.

sudo apt-get install latexmk

HTML Version

Compile the html version of the user guide via

python3 -m sphinx -T -E -b html -d _build/doctrees -D language=en . _build/html

Check that no errors occur during compilation and then navigate to the created html files

cd _build/html

Open index.html to see if everything has worked out correctly (e.g. with your favourite browser).
Note that you can simply run the script buildHTML.sh in the documentation directory for this task.

PDF Version

Next, create the pdf output.

python3 -m sphinx -b latex -D language=en -d _build/doctrees . _build/latex

and switch into the output directory

cd _build/latex

Finally, compile the pdf file

latexmk -r latexmkrc -pdf -f -dvi- -ps- -jobname=HOPR -interaction=nonstopmode

and check if the pdf exists

ls _build/latex/HOPR.pdf

Note that you can simply run the script buildPDF.sh in the documentation directory for this task.

 4. Compiler Options

4. Compiler Options

Todo: scribed current compiler options and what their purpose is (what was encountered in the past in order for the options to be as
they are now?)

	Release: optimized with -O3 for execution runs

	Debug: debugger options

	Sanitize: GNU sanitizer for further debugging

	Compiler-Flag

	Options,List

	What does it do?

	–ffpe-trap=list

	invalid

	invalid floating point operation, such as SQRT(-1.0)

	

	zero

	division by zero

	

	overflow

	overflow in a floating point operation

	

	underflow

	underflow in a floating point. DO NOT USE. Because a small value can occure, such as exp(-766.2). operation

	

	precision

	loss of precision during operation

	

	

	Some of the routines in the Fortran runtime library, like CPU_TIME, are likely to trigger floating point exceptions when ffpe-trap=precision is used. For this reason, the use of ffpe-trap=precision is not recommended.

	

	denormal

	operation produced a denormal value

	-fbacktrace

	

	runtime error should lead to a backtrace of the error

	-fcheck=keyword

	all

	enable all run-time check

	

	array-temps

	Warns at run time when for passing an actual argument a temporary array had to be generated. The information generated by this warning is sometimes useful in optimization, in order to avoid such temporaries.

	

	bounds

	Enable generation of run-time checks for array subscripts and against the declared minimum and maximum values. It also checks array indices for assumed and deferred shape arrays against the actual allocated bounds and ensures that all string lengths are equal for character array constructors without an explicit typespec.

	

	do

	Enable generation of run-time checks for invalid modification of loop iteration variables

	

	mem

	Enable generation of run-time checks for memory allocation. Note: This option does not affect explicit allocations using theALLOCATE statement, which will be always checked.

	

	pointer

	Enable generation of run-time checks for pointers and allocatables.

	

	recursion

	Enable generation of run-time checks for recursively called subroutines and functions which are not marked as recursive. See also -frecursive. Note: This check does not work for OpenMP programs and is disabled if used together with -frecursiveand -fopenmp.

	-fdump-core

	

	Request that a core-dump file is written to disk when a runtime error is encountered on systems that support core dumps. This option is only effective for the compilation of the Fortran main program

	-fstack-arrays

	

	Adding this option will make the Fortran compiler put all local arrays, even those of unknown size onto stack memory. If your program uses very large local arrays it is possible that you will have to extend your runtime limits for stack memory on some operating systems. This flag is enabled by default at optimization level -Ofast.

	-frepack-arrays

	

	In some circumstances GNU Fortran may pass assumed shape array sections via a descriptor describing a noncontiguous area of memory. This option adds code to the function prologue to repack the data into a contiguous block at runtime.This should result in faster accesses to the array. However it can introduce significant overhead to the function call, especially when the passed data is noncontiguous.

	-finline-matmul-limit=n

	

	

	-finit-local-zero

	

	The -finit-local-zero option instructs the compiler to initialize local INTEGER, REAL, and COMPLEX variables to zero, LOGICALvariables to false, and CHARACTER variables to a string of null bytes

 5. Building the AppImage Executable

5. Building the AppImage Executable

Navigate to the HOPR repository and create a build directory

mkdir build && cd build

and compile HOPR using the following cmake flags

cmake .. -DCMAKE_INSTALL_PREFIX=/usr

and then

make install DESTDIR=AppDir

Then create an AppImage (and subsequent paths) directory in the build folder

mkdir -p AppDir/usr/share/icons/

and copy the HOPR logo into the icons directory

cp ../docs/Meshformat/pics/HOPR_logo.png AppDir/usr/share/icons/hopr.png

A desktop file should already exist in the top-level directory containing

[Desktop Entry]
Type=Application
Name=hopr
Exec=hopr
Comment=Tool create .h5 hopr meshes to be read by piclas, flexi, fluxo, etc.
Icon=hopr
Categories=Development;
Terminal=true

Next, download the AppImage executable and run

./linuxdeploy-x86_64.AppImage --appdir AppDir --output appimage --desktop-file=../hopr.desktop

If an error is encountered, see the Section Troubleshooting section for a possible solution.
The executable should be created in the top-level directory, e.g.,

hopr-2de94ad-x86_64.AppImage

6. Troubleshooting

This section collects typical errors that are encountered when trying to build the AppImage.

6.1. dlopen(): error loading libfuse.so.2

If the error

dlopen(): error loading libfuse.so.2

AppImages require FUSE to run.
You might still be able to extract the contents of this AppImage
if you run it with the --appimage-extract option.
See https://github.com/AppImage/AppImageKit/wiki/FUSE
for more information

is encountered, this might be due to a missing fuse installation.
On Debian/Ubuntu systems, simply run

sudo apt install libfuse2

 7. Markdown Examples

7. Markdown Examples

7.1. hyperlinks

one with a title [http://fsf.org]. Unclear how to enforce new window.

7.2. Code environment

Either use fenced style (tildes)

if (a > 3) {
 moveShip(5 * gravity, DOWN);
}

or indented style (4 whitespaces)

if (a > 3) {
 moveShip(5 * gravity, DOWN);
}

Both works with pandoc and wordpress. Also see pandoc verbatim code [http://pandoc.org/README.html#verbatim-code-blocks].

7.3. Equations

(@gleichung1) $\(a=b*c\)$
As (@gleichung1) shows, blabla.

7.4. Bibtex, cite

Hindenlang [@Hindenlang2015]. Only works with pandoc!

[bibshow file=references.bib]

Hindenlang [bibcite key=Hindenlang2015], Gassner [bibcite key=gassner2011disp]

7.5. section references

7.6. Figures, caption

[image: This is the captionabel{mylabel}]

[image: ../_images/logo.png]

Fig. 7.1 This is an example caption.

See Fig. 7.1 for an image from the web embedded in this documentation.

[image: ../_images/HOPR.png]

Fig. 7.2 This is an example caption.

See Fig. 7.2 for embedding a local file.

7.7. tables

7.8. unnumbered section headings

just add

{-}

after the heading

7.9. Code blocks for various languages

int a = 32;
int a = 32;

 Built-In Mesh Generators

Built-In Mesh Generators

Table of Contents

	1. Straight-Edged Boxes

	2. Curved Meshes

 1. Straight-Edged Boxes

1. Straight-Edged Boxes

HOPR has several simple built-in mesh generators.

 [image: ../Cartbox_multiple_stretch_mesh.png]

 Fig. 1.1 HOPR output: Mesh of multiple cartesian boxes with a stretched element arrangement.

1.1. Cartesian Box

This tutorial shows how to generate a simple mesh of a cubical box and the definition of boundary conditions. The parameter file can be found in

tutorials/1-01-cartbox/parameter.ini

See Cartesian Box: Exemplary Variations of Boundary Conditions for cases with different boundary conditions.

1.1.1. Cartesian Box: Description of Parameters

The following table describes all parameters present in the parameter file. Therefore, it is limited to the parameters needed to generate a Cartesian box mesh. A description of all parameters can be found in List of Parameters.

Table 1.3 Parameters Cartesian Box.

	Parameters

	Setting

	Description

	ProjectName

	cartbox

	Defines the name embedded in the generated mesh file and is used as prefix for the output files (cartbox_mesh.h5, cartbox_Debugmesh.dat, cartbox_Debugmesh_BC.dat, …).

	DebugVisu

	T

	Generation of visualization files for the volume and boundary mesh (*_Debugmesh.dat, *_Debugmesh_BC.dat) to aid debugging.

	Mode

	1

	Mode of mesh generation; 1: Cartesian mesh (build-in), 3: CFD General Notation System (CGNS, extern)

	nZones

	1

	Number of Cartesian boxes

	Corner

	(/0.,0.,0. ,,1.,0.,0. ,,1.,1.,0. ,,0.,1.,0. ,,0.,0.,1. ,,1.,0.,1. ,,1.,1.,1. ,,0.,1.,1. /)

	Coordinates of the box’s corner nodes in the three-dimensional Cartesian coordinate system. Refer to Fig. 4.1 for the node ordering.Furthermore, the corner nodes define the six surfaces of the cartesian box, see Table 4.2.

 2. Curved Meshes

2. Curved Meshes

2.1. Curved Structured Mesh

This tutorial shows how to generate a curved structured mesh with an equidistant or with a stretched element arrangement alternatively.
The parameter file can be found in

tutorials/1-05-curved_structured/parameter.ini

To generate a curved structured mesh the following parameter settings are mandatory:

	Mode=11 (curved structured block with hexahedral elements):
This mode activates a transformation of the cartesian coordinate system to a rotated cylindrical coordinate system as shown in Fig. 2.1. The element distribution which the user can determine by the parameter nElems refers subsequently to the new coordinate system.

 External Meshes

External Meshes

In HOPR, it is possible to read unstructured meshes with straight edged elements, and, if needed, use several curving methods to account for curved domain boundaries.

[image: ../_images/DLRF6_bOrd5_innersplines.png]

Fig. 1 HOPR output: Curved surface and first layer of curved elements

To help the HOPR user to get familiar with these different features for external meshes three hands-on tutorials are provided.

Table of Contents

	1. External Meshes without Curved Boundaries

	2. External Meshes with Curved Boundaries

 1. External Meshes without Curved Boundaries

1. External Meshes without Curved Boundaries

This tutorial shows how to read in externally generated unstructured and structured meshes with straight-edged elements.

The parameter file can be found in

tutorials/2-01-external_mesh_CGNS_sphere/parameter.ini

1.1. External Mesh

The external mesh file that is to be used has to be available in the directory of the executed parameter file as a CGNS format file. This file is read-in by introducing the parameter filename. As one can see from the parameter.ini’s excerpt and Fig. 1.1, the parameters of the parameter file have to be adapted to the definitions in the CGNS mesh file. This means that the parameters Mode, nZones, BoundaryName and BoundaryType cannot be set freely anymore because the structure of the external mesh must be retained. In this case, the external mesh spheremesh02 is available as CGNS file and consists of three zones. Therefore, the settings of the parameters are Mode=3, nZones=3, filename=spheremesh02.cgns.

Another important fact is that for external meshes no BCIndex parameter is needed which normally assigns the boundary conditions to the surfaces of the mesh. The reason for this is that the boundary conditions are assigned to their belonging surfaces by their names. The boundary condition, for example, of Zone_1 of the CGNS file (BC_sphere) has to be defined as BoundaryName=sphere in the parameter file.

!=== !
! MESH
!=== !
Mode =3 ! 1 Cartesian 3 CGNS 4 STAR-CD V3
nZones =3 ! number of zones
filename=spheremesh02.cgns ! name of mesh file
...
...

!=== !
! CURVED
!=== !
useCurveds=F ! T to generate curved boundaries

!=== !
! BOUNDARY CONDITIONS
!=== !
BoundaryName=sphere ! BC_Name must be defined in mesh file
BoundaryType=(/4,1,0,0/)
BoundaryName=inflow
BoundaryType=(/2,0,0,0/)
BoundaryName=outflow
BoundaryType=(/2,0,0,0/)
BoundaryName=mantel
BoundaryType=(/2,0,0,0/)

 [image: ../CGNSviewer_spheremesh04.png]

 Fig. 1.1 Screenshot of the folder structure of a CGNS mesh.

Furthermore, the BoundaryType parameter has to be adapted to the definitions in the CGNS mesh file. If a boundary of the external mesh is curved, the curveIndex component (2nd component) of the BoundaryType parameter has to be a value unequal to zero. Whether curved boundaries are generated or not is controlled by the parameter useCurveds. In this tutorial, useCurveds=F. The case useCurveds=T is the topic of the next tutorial which explains how to use mesh curving techniques to generate curved boundaries.

All new parameters of the parameter file of this tutorial are explained below.

Table 1.7 External Mesh Parameters.

	Parameters

	Setting

	Description

	filename

	spheremesh.cgns

	The name of the external mesh file. The necessary files have to be available in the directory of the executed parameter file as CGNS files.

	meshscale

	 	0.001

	Scales all input mesh coordinates by a fixed factor

	SpaceQuandt

	 	1000

	Characteristic length of the mesh

	useCurveds

	T

	T (True): If curved boundaries are definedF (False): If no curved boundaries are defined .

 2. External Meshes with Curved Boundaries

2. External Meshes with Curved Boundaries

This tutorial shows how several methods can be applied to curve the boundary faces of the elements.

The parameter file can be found in

tutorials/2-02-external_mesh_CGNS_sphere_curved/parameter.ini

2.1. Mesh Curving Techniques

In the development of next generation numerical methods for CFD, high-order methods are promising a substantial increase in efficiency and accuracy. While the particular high-order methods can be very distinct, they have in common that they must rely on a high-order approximation of curved geometries to maintain their high-order of accuracy. The generation of curved meshes is thus a topic the importance of which cannot be overstated, if one truly wants to apply high order methods to problems with industrial relevance. Especially aerospace applications heavily rely on complex geometries and pose high requirements to the quality of geometry representation.

 [image: ../Curving.jpg]

 Fig. 2.1 From linear meshes to high order meshes.

HOPR provides several strategies to produce high-order meshes, relying on linear meshes, which are the standard of today’s state-of-the-art meshing software and can be generated by commercial mesh generation tools. The two main strategies can be selected with the parameter curvingMethod. Therefore, the parameter useCurveds has to set to T.

Table 2.37 Mesh Curving Techniques Parameter.

	Parameters

	Setting

	Description

	curvingMethod

	1

	0: No curving method activated.1: Curving with normal vectors at surface points.3: Curving with subdivided surface mesh.

 Agglomeration of Block-Structured Meshes

Agglomeration of Block-Structured Meshes

A simple strategy to create a fully curved mesh is to use block-structured meshes (must be given in structured CGNS format) and agglomerate linear elements to high order elements.

[image: ../_images/Periodichill_3Dview.png]

Fig. 2 Example of an agglomerated curved mesh of the periodic hill testcase

Table of Contents

	1. Block-Structured Meshes

 1. Block-Structured Meshes

1. Block-Structured Meshes

This tutorial shows how to agglomerate block-structured grids with linear elements to get a high-order mesh consisting of fully curved hexahedral elements. The parameter file can be found in

tutorials/3-01-agglomeration_NACA/parameter.ini

1.1. Restrictions on the block-structured meshes

HOPR poses the following restrictions on the provided block-structured meshes:

	One block face must be exclusively associated to one boundary condition. Block faces with multiple BCs or a combination of boundary and internal element faces on a single block face are likely to produce wrong mesh topology! The user is responsible for splitting blocks in such cases. Otherwise, HOPR will be unable to perform the mesh connect step!

	When providing a block-structured mesh for agglomeration, only one unique factor is permitted in the I,J,K dimension of all blocks!

Each boundary conditions present in the provided mesh must be matched in the parameter file by its name and an associated boundary type:

 BoundaryName = wall_1
 BoundaryType = (/4,0,0,0/)
 BoundaryName = wall_2
 BoundaryType = (/4,0,0,0/)

Boundary names can match multiple BCs by specifying only the common part of the boundary name string. In the example above, BoundaryName=wall would match all boundary conditions.

1.2. Initial Meshes

Agglomeration of block-structured meshes provides a simple and robust curving technique for the generation of three-dimensional high-order meshes. In HOPR, mesh agglomeration is controlled by the MeshIsAlreadyCurved parameter. The application of mesh agglomeration is demonstrated on two meshes of a NACA-profile provided as CGNS files. Here, mesh 1 is suitable for inviscid simulations without boundary layer refinement and mesh 2 features boundary layer refinement.

Mesh1: NACA0012_icem_32elems.cgns

 Post-processing Meshes

Post-processing Meshes

Once a mesh is built there are several post-processing options available.

Table of Contents

	1. Mesh uncurving

	2. Mesh Refinement

	3. Generation of Hexahedral Meshes

 1. Mesh uncurving

1. Mesh uncurving

As high order numerical methods require a high order representation of the boundary, a number of methods have been developed to provide this level of accuracy. In some curving techniques, such as agglomerated meshes, it is not just the boundary that is curved, but the entire volume of the mesh is made up of curved cells. However, if the cell is not adjacent to curved boundaries, it is numerically preferable to use linear cells. Thus, HOPR provides a function for uncurving curved meshes, optionally at a given distance to the boundary. The parameter nCurvedBoundaryLayers specifies the number of cells from a curved boundary (i.e. boundaries with curveIndex>0) that stay curved. For the remaining mesh, a (tri-)linear mapping using only the corner nodes is applied.

	For nCurvedBoundaryLayers=-1 the whole mesh stays curved (default).

	For nCurvedBoundaryLayers=0 in the first cell only the boundary itself remains curved, all other faces and cells in the mesh will be linear.

	For nCurvedBoundaryLayers=1-n the first n cells away from the boundary remain curved.

These choices are depicted in the figures bellow, and the table lists the scaled Jacobian ranges for the elements. The mesh becomes significantly less distorted if only the first cell is curved. Note that it is often required to curve more than the first cell, especially for fine curved boundary layer meshes.

 	

 [image: ../All_curved.png]

 Fig. 1.1 NACA-profile with all elements curved

 	

 [image: ../0_curved.png]

 Fig. 1.2 NACA-profile with only the profile boundary curved

 	

 [image: ../1_curved.png]

 Fig. 1.3 NACA-profile with the first cell curved

 	

 [image: ../3_curved.png]

 Fig. 1.4 NACA-profile with the first three cells curved

Table 1.10 Distribution of the smallest scaled Jacobians per element.

	Number of elements with scaled Jacobians ranging between:

	<0

	<0.1

	<0.2

	<0.3

	<0.4

	<0.5

	<0.6

	<0.7

	<0.8

	<0.9

	<1.0

	Only boundary is curved:

	0

	0

	0

	0

	8

	4

	8

	208

	100

	276

	1124

	First element is curved:

	0

	0

	0

	0

	8

	4

	16

	208

	100

	288

	1104

	First 3 elements are curved:

	0

	0

	0

	0

	16

	12

	32

	224

	92

	284

	1068

	All elements are curved:

	0

	0

	0

	0

	136

	596

	748

	200

	12

	36

	0

Parameter File

To test this feature, add nCurvedBoundaryLayers=n to the parameter file, which is also found in

tutorials/3-01-agglomeration_NACA/parameter.ini

 2. Mesh Refinement

2. Mesh Refinement

It is often desirable to refine existing meshes, which is done by subdividing the elements into smaller elements.
Up to now, the refinement only works for hexahedra with linear edges.
For meshes containing other element types than hexahedra, this option is not applicable.
The feature is controlled by the flag nFineHexa=x, where x specifies the number of subdivisions of each element in each spatial direction.

 	

 [image: ../Hopr_nfine1.png]

 Fig. 2.1 Standard mesh

 	

 [image: ../Hopr_nfine2.png]

 Fig. 2.2 All elements refined by a factor of 2

Parameter File

To test this feature, add nFineHexa=2 to the parameter file, which is also found in

tutorials/2-01-external_meshes_sphere/parameter.ini

 3. Generation of Hexahedral Meshes

3. Generation of Hexahedral Meshes

Since many solvers require purely hexahedral meshes, HOPR implements a subdivision strategy to split meshes consisting of tetrahedra, prisms and hexahedra into purely hexahedral meshes. This feature is activated using the parameter splitToHex=T. Note, that pyramids cannot be decomposed to hexahedra in a straightforward way, thus this feature cannot be applied to meshes containing pyramids. Also note that this option is currently limited to linear meshes.

 	

 [image: ../Splittohex0.png]

 Fig. 3.1 Mesh consisting of 6 tetrahedra

 	

 [image: ../Splittohex1.png]

 Fig. 3.2 Each tetrahedron subdivided into 4 hexahedra

Parameter File

To test this feature, set elemtype to either 104 (Tetrahedron) or 106 (Prism with triangular base) and add splitToHex=T to the parameter file, which is found in

tutorials/1-01-cartbox/parameter.ini

 Visualization

Visualization

Table of Contents

	1. HOPR Output Parameter

	2. Visualization with Paraview

 1. HOPR Output Parameter

1. HOPR Output Parameter

Table 1.11 HOPR Output Parameter.

	Parameters

	Example

	Data Type

	Array Dim.

	Default Value

	Description

	Debugvisu

	Debugvisu=T

	Logical

	1

	F

	T (True): Files will be generated, which enable you